edexcel

Mark Scheme (Results)
November 2014

Pearson Edexcel GCSE
In Mathematics A (1MA0)
Foundation (Calculator) Paper 2F

Edexcel and BTEC Qualifications

Edexcel and BTEC qualifications are awarded by Pearson, the UK's largest awarding body. We provide a wide range of qualifications including academic, vocational, occupational and specific programmes for employers. For further information visit our qualifications websites at www.edexcel.com or www.btec.co.uk. Alternatively, you can get in touch with us using the details on our contact us page at www.edexcel.com/contactus.

Pearson: helping people progress, everywhere

Pearson aspires to be the world's leading learning company. Our aim is to help everyone progress in their lives through education. We believe in every kind of learning, for all kinds of people, wherever they are in the world. We've been involved in education for over 150 years, and by working across 70 countries, in 100 languages, we have built an international reputation for our commitment to high standards and raising achievement through innovation in education. Find out more about how we can help you and your students at: www. pearson.com/uk

November 2014
Publications Code UG040305
All the material in this publication is copyright
© Pearson Education Ltd 2014

NOTES ON MARKI NG PRI NCI PLES

All candidates must receive the same treatment. Examiners must mark the first candidate in exactly the same way as they mark the last.

2 Mark schemes should be applied positively.
3 All the marks on the mark scheme are designed to be awarded. Examiners should always award full marks if deserved, i.e if the answer matches the mark scheme. Note that in some cases a correct answer alone will not score marks unless supported by working; these situations are made clear in the mark scheme. Examiners should be prepared to award zero marks if the candidate's response is not worthy of credit according to the mark scheme.

4 Where some judgement is required, mark schemes will provide the principles by which marks will be awarded and exemplification may be limited.

5 Crossed out work should be marked UNLESS the candidate has replaced it with an alternative response.
6 Mark schemes will award marks for the quality of written communication (QWC).
The strands are as follows:
i) ensure that text is legible and that spelling, punctuation and grammar are accurate so that meaning is clear Comprehension and meaning is clear by using correct notation and labelling conventions.
ii) select and use a form and style of writing appropriate to purpose and to complex subject matter Reasoning, explanation or argument is correct and appropriately structured to convey mathematical reasoning.
iii) organise information clearly and coherently, using specialist vocabulary when appropriate.

The mathematical methods and processes used are coherently and clearly organised and the appropriate mathematical vocabulary used.

With working

If there is a wrong answer indicated on the answer line always check the working in the body of the script (and on any diagrams), and award any marks appropriate from the mark scheme.
If working is crossed out and still legible, then it should be given any appropriate marks, as long as it has not been replaced by alternative work.
If it is clear from the working that the "correct" answer has been obtained from incorrect working, award 0 marks. Send the response to review, and discuss each of these situations with your Team Leader.
If there is no answer on the answer line then check the working for an obvious answer.
Partial answers shown (usually indicated in the ms by brackets) can be awarded the method mark associated with it (implied).
Any case of suspected misread loses A (and B) marks on that part, but can gain the M marks; transcription errors may also gain some credit. Send any such responses to review for the Team Leader to consider.
If there is a choice of methods shown, then no marks should be awarded, unless the answer on the answer line makes clear the method that has been used.

Follow through marks
Follow through marks which involve a single stage calculation can be awarded without working since you can check the answer yourself, but if ambiguous do not award.
Follow through marks which involve more than one stage of calculation can only be awarded on sight of the relevant working, even if it appears obvious that there is only one way you could get the answer given.
$9 \quad$ I gnoring subsequent work
It is appropriate to ignore subsequent work when the additional work does not change the answer in a way that is inappropriate for the question: e.g. incorrect cancelling of a fraction that would otherwise be correct
It is not appropriate to ignore subsequent work when the additional work essentially makes the answer incorrect e.g. algebra.

Probability

Probability answers must be given a fractions, percentages or decimals. If a candidate gives a decimal equivalent to a probability, this should be written to at least 2 decimal places (unless tenths).
Incorrect notation should lose the accuracy marks, but be awarded any implied method marks.
If a probability answer is given on the answer line using both incorrect and correct notation, award the marks.
If a probability fraction is given then cancelled incorrectly, ignore the incorrectly cancelled answer.

Linear equations

Full marks can be gained if the solution alone is given on the answer line, or otherwise unambiguously indicated in working (without contradiction elsewhere). Where the correct solution only is shown substituted, but not identified as the solution, the accuracy mark is lost but any method marks can be awarded (embedded answers).

Parts of questions

Unless allowed by the mark scheme, the marks allocated to one part of the question CANNOT be awarded in another.

Range of answers

Unless otherwise stated, when an answer is given as a range (e.g 3.5-4.2) then this is inclusive of the end points (e.g 3.5, 4.2) and includes all numbers within the range (e.g 4, 4.1)

14 The detailed notes in the mark scheme, and in practice/training material for examiners, should be taken as precedents over the above notes

```
Guidance on the use of codes within this mark scheme
M1 - method mark for appropriate method in the context of the question
A1 - accuracy mark
B1 - Working mark
C1 - communication mark
QWC - quality of written communication
oe - or equivalent
cao - correct answer only
ft - follow through
sc - special case
dep - dependent (on a previous mark or conclusion)
indep - independent
isw - ignore subsequent working
```


PAPER: 1MA0_2F					
Question		Working	Answer	Mark	Notes
4	(a)		Perpendicular	1	B1 for a perpendicular line drawn
	(b)		Circle radius 4 cm	1	B1 for a circle of radius 4 cm drawn
	(c)		Isosceles triangle	1	B1 for an isosceles triangle
	(d)		Quadrilateral	1	B1 for quadrilateral with exactly two right angles
5	(a)		winter	1	B1 cao
	(b)		amaryllis	1	B1 cao
	(c)(i)		Mark at 0	2	B1 for mark at 0
	(ii)		Mark at $\frac{1}{2}$		B1 for mark at $\frac{1}{2}$
6			85.50	2	M1 for $2 \times 12.75+3 \times 20$ or $12.75+3 \times 20(=72.75)$ A1 for 85.5(0)
	(b)		16	3	M1 (ft from (a)) for subtracting cost of 1 or 2 or 5 lessons from 305.50 $305.50-" 2 \times 12.75 "(=280) \quad$ or $\quad 305.50-" 85.50 "(=220)$ or 305.50-12.75 (=292.75) M1 for " 280 " $\div 20(=14)$ or " $220 \div 20(=11)$ or $292.75 \div 20$ A1 cao
					OR M1 for adding 20s to cost of 1 or 2 or 5 lessons eg 12.75 or " 2×12.75 " or " 85.50 " and intention to add on 20 s or 14×20 or 11×20 M1 for " 2×12.75 " or " 85.50 " and adding 20s to within 20 of 305.50 A1 cao

PAPER: 1MA0_2F					
Question		Working	Answer	Mark	Notes
7	(a)		Newcastle	1	B1 cao
	(b)		3	1	B1 cao
	(c)		-1	2	M1 for intention to find middle of -5 and 3 eg, may see -5 and 3 identified on a correct number line or $(-5+3) \div 2$ or $-5+(3--5) \div 2$ or $3-(3--5) \div 2$ A1 cao
8	(a)		5,3	1	B1 cao
	(b)		2, 4	1	B1 cao
	(c)		Point marked	1	B1 cao
9	(a)		14 cm or 0.14 m	3	M1 for $3 \times 32+2 \times 45(=186)$ oe M1 (indep) for subtraction of "wood needed" from 2 m using consistent units $\text { eg } 200-" 186 "(=14) \text { or } 2-" 1.86 "(=0.14)$ A1 for $14 \mathrm{~cm}, 0.14 \mathrm{~m}$ or 140 mm
	(b)		44	3	M1 for $320 \div 14(=22.8 \ldots$ or 23$)$ or $2 \times 320 \div 14(=45.7 \ldots$ or 46$)$ M1 (dep) for evidence of truncating "total DVDs" down to integer value, e.g. $22.8 \ldots$ to 22 or $45.7 \ldots$ to 45 A1 cao

PAPER: 1MA0_2F					
Question		Working	Answer	Mark	Notes
10	(a)		1	1	B1 cao
	(b)		1.8	2	M1 for adding all 10 scores and dividing by 10 eg $18 \div 10$ A1 cao
	*(c)		Greater and explanation	2	M1 (ft from (b)) adding all 12 scores and dividing by 12 or for comparing 4 and 2 with ' 1.8 ' or comparing $4+2$ with $2 \times{ }^{\prime} 1.8$ ' C 1 (ft from (b)) for correct conclusion and correct explanation NB: if M1 A1 awarded in (b) comparison must be with 1.8
11		0657 0657 0719 0719 0710 0710 0733 0733 0745 0758 0745 0758 0850 0927 0850 0927 0920 09 57 09 20 0957	Fully correct schedule	3	B1 for 0657 or 0719 with correct arrival time in Peterborough or for 0745 or 0758 with associated arrival time in York B1 for fully correct departure times and arrival times for 2 train journeys that enable travel from Stamford to York to arrive by 0930 B1 ft for arrival time at meeting 30 mins after York arrival
12	(a)		22	1	B1 cao
	(b)		18	1	B1 cao
	(c)		3.4	2	M1 for intention to subtract 7 from both sides or divide all terms by 5 as a first step. A1 for 3.4 oe
13			Triangle drawn	2	M1 for angle of 35° or for line 5.5 cm long A1 cao

PAPER: 1MA0_2F					
Question		Working	Answer	Mark	Notes
16			89.3855	2	M1 for 3.8 or 23.5225 or 18.43 or 36.86 or 89.3855 seen only rounded or truncated to at least 3 sig figs A1 cao
17	(a) (b)		$\begin{array}{rrrl} 14 & 13 & 20 & 47 \\ 12 & 7 & 34 & 53 \\ 26 & 20 & 54 & 100 \\ & & & \\ & & \frac{13}{47} & \\ & & & \end{array}$	3 2	B3 for fully correct table (B2 for 3 or 4 or 5 correct entries) (B1 for 1 or 2 correct entries) M1 for $\frac{13}{n}, n>13$ or for $\frac{n}{47}, n<47$ A1 for $\frac{13}{47}$ (or $0.27-0.28$ or $27 \%-28 \%$)
18			80	3	M1 for intention to find missing side length $10-4(=6)$ or perimeter of 4 rectangles eg $4 \times(10+4+10+4)(=112)$ M1 for complete method to find perimeter eg $4 \times\left(10+4+{ }^{\prime} 6\right.$ ' $)$ or ' 112 ' -8×4 A1 cao

PAPER: 1MA0_2F					
Question		Working	Answer	Mark	Notes
19			36	4	M1 for $\frac{3}{5} \times 240(=144)$ M1 for $\frac{1}{4} \times 240(=60)$ M1 (dep on M2) for $240-\left({ }^{\prime} 144\right.$ ' + ' 60 ') A1 cao OR M1 for $\frac{3}{5}+\frac{1}{4}$ or $\frac{17}{20}$ oe M1 for $1-‘ \frac{17}{20} '\left(=\frac{3}{20}\right)$ or ' $\frac{17}{20} ’ \times 240(=204)$ M1 (dep on M2) for ' $\frac{3}{20}$ ' $\times 240$ or $240-{ }^{\prime} 204$ ' A1 cao
20	(a) (b)		$\begin{aligned} & 360 \\ & 25 \end{aligned}$	$\begin{aligned} & 2 \\ & 2 \end{aligned}$	M1 $30 \div 10(=3)$ or $120 \div 10(=12)$ or $120+120+120$ oe A1 cao M1 for $\frac{750}{300}(=2.5)$ oe A1 cao
21	(a) (b)		Relationship $6.1 \text { to } 6.4$	1 2	B1 for description of relationship eg "As the length of the pine cone increases the width increases" oe (accept positive correlation) M1 for a single straight line segment with positive gradient that could be used as a line of best fit or a vertical line from 8.4 or a point at $(8.4, y)$ where y is from 6.1 to 6.4 A1 for given answer in the range 6.1 to 6.4

PAPER: 1MA0_2F					
Question		Working	Answer	Mark	Notes
22			2.10 euros or $£ 1.81$	3	M1 for 2.5×1.16 (= 2.9) M1 (dep) for 5 - " 2.9 " (=2.1) A1 for 2.1(0) euros OR M1 for $5 \div 1.16$ (= 4.31...) M1 (dep) for " 4.31 " - $2.50(=1.81)$ A1 for $£ 1.81$
23	(a) (b)		$\begin{aligned} & 3(x+2) \\ & 7 y-16 \end{aligned}$	1 2	B1 cao M1 for any intention to expand a bracket eg $5 y-10$ or $2 y-6$ A1 cao
*24			Decision (No the attendance target was not met)	3	M1 for attempting to find total number of students or 1210 seen M1 for $\frac{' 1092^{\prime}}{' 1210^{\prime}} \times 100$ oe or $\frac{' 118^{\prime}}{\prime 1210^{\prime}} \times 100$ oe C1 for correct decision with 90.(2479...) or correct decision with 6 and 9.(752...) OR M1 for attempting to find total number of students or 1210 seen M1 for $\frac{94}{100} \times$ ' 1210 ' oe C1 for correct decision with 1137 (.4) and 1092 or correct decision with 72(.6) and 118 OR M1 for a correct $\%$ method for one year, e.g. $\frac{192}{208} \times 100$ or $\frac{94}{100} \times 208$ M1 for a correct \% method for each year C1 for correct decision with 92.(30...), 90.(87...), 89.(31...), 89.(27...), 89.(91...) or 195(.5..), 226.(9...), 246.(2..), 245.(3...), 223.(7...)

PAPER: 1MA0_2F										
	uestion	Working						Answer	Mark	Notes
25		$\begin{array}{\|l\|l\|l\|l\|l\|l\|l\|} \hline x & -2 & -1 & 0 & 1 & 2 & 3 \\ \hline y & -7 & -5 & -3 & -1 & 1 & 3 \\ \hline \end{array}$						Straight line from $(-2,-7)$ to $(3,3)$	4	(Table of values)
								C1 for axes scaled and labelled		
								M1 for at least 2 correct attempts to find points by substituting values of		
								M1 ft for plotting at least 2 of their points (any points plotted from their table must be plotted correctly)		
								A1 for correct line between $x=-2$ and $x=3$		
								(No table of values)		
								C1 for axes scaled and labelled		
								M1 for at least 2 correct points with no more than 2 incorrect points		
								M1 for at least 2 correct points (and no incorrect points) plotted OR line segment of $y=2 x-3$ drawn		
								A1 for correct line between $x=-2$ and $x=3$		
								(Use of $\boldsymbol{y}=\mathbf{m} \boldsymbol{x}+\mathrm{c}$)		
								C1 for axes scaled and labelled		
								M1 for line drawn with gradient of 2 OR line drawn with a y intercept of -3		
								M1 for line drawn with gradient of 2 AND with a y intercept of -3		
								A1 for correct line between $x=-2$ and $x=3$		
								[SC B2 (indep of C 1) for the correct line between $x=0$ and $x=3$, ignore any additional incorrect line segment(s)]		

PAPER: 1MA0_2F					
Question		Working	Answer	Mark	Notes
*26			No + reason	4	M1 for intention to find the circumference eg $140 \times \pi(=439.82 \ldots)$ A1 for circumference $=439-440$ M1 (dep on previous M1) for a complete method shown that could arrive at two figures that are comparable, eg "C" $\div 60 \times 12(=87.96 .),. 90 \div 12 \times 60$ $(=450), \quad 90 \times 60 \div \mathrm{C} "(=12.27), \quad " \mathrm{C} " \div 90 \times 12(=58.64 .$. C1 (dep on both M marks) for No and explanation that shows a correct comparison eg only 84 people could sit around the tables or that 13 tables are needed or that 480 cm is needed.

Modifications to the mark scheme for Modified Large Print (MLP) papers.

Only mark scheme amendments are shown where the enlargement or modification of the paper requires a change in the mark scheme.
The following tolerances should be accepted on marking MLP papers, unless otherwise stated below
Angles: ± 5 은
Measurements of length: $\pm 5 \mathrm{~mm}$

PAPER: 1MA0_2F			
Question		Modification	Notes
1		2 cm grid - wording added 'each square represents a one centimetre square' -this is also on diagram	
2		Right axis labelled	
4	(a) (b (c) (d)	2 cm grid 4 cm changed to 5 2 cm grid 2 cm grid	
5	(c)	Probability scales lengthened	
7		No map Information put into a table	
13		$\begin{array}{\|l\|} \hline 5.5 \mathrm{~cm} \text { side changed to } 8 \mathrm{~cm} \\ 35^{\circ} \text { changed to } 45^{\circ} \\ \hline \end{array}$	M1 for angle of 45° or for line 8 cm long A1 cao
23	(b)	x changed to y	B1 for 3(y+2)

